A Multigrid Scheme for Elliptic Constrained Optimal Control Problems
نویسندگان
چکیده
A multigrid scheme for the solution of constrained optimal control problems discretized by finite differences is presented. This scheme is based on a new relaxation procedure that satisfies the given constraints pointwise on the computational grid. In applications, the cases of distributed and boundary control problems with box constraints are considered. The efficient and robust computational performance of the present multigrid scheme allows to investigate bang-bang control problems.
منابع مشابه
Patch Smoothers for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems
We consider a multigrid method for solving the discretized optimality system of a PDE-constrained optimization problem. In particular, we discuss the construction of an additive Schwarz-type smoother for a class of elliptic optimal control problems. A rigorous multigrid convergence analysis yields level-independent convergence rates. Numerical experiments indicate that the convergence rates are...
متن کامل4 A Multigrid Method for the Solution of Linear-Quadratic Optimal Control Problems
The main part of this chapter is devoted to the development and presentation of a coupled multigrid method for the solution of saddle point systems (2.51) arising from the discretization of PDE constrained optimization problems. In subsequent chapters, the devised method will be adapted to handle inequality constraints on the control, and it will be employed for the solution of the systems, whi...
متن کاملMultigrid Methods for Elliptic Optimal Control Problems
Multigrid methods for elliptic optimal control problems
متن کاملMultigrid solution of a distributed optimal control problem constrained by the Stokes equations
In this work we construct multigrid preconditioners to accelerate the solution process of a linear-quadratic optimal control problem constrained by the Stokes system. The first order optimality conditions of the control problem form a linear system (the KKT system) connecting the state, adjoint, and control variables. Our approach is to eliminate the state and adjoint variables by essentially s...
متن کاملMultigrid Solution of a Lavrentiev-Regularized State-Constrained Parabolic Control Problem
A mesh-independent, robust, and accurate multigrid scheme to solve a linear state-constrained parabolic optimal control problem is presented. We first consider a Lavrentiev regularization of the state-constrained optimization problem. Then, a multigrid scheme is designed for the numerical solution of the regularized optimality system. Central to this scheme is the construction of an iterative p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 31 شماره
صفحات -
تاریخ انتشار 2005